
Chase Joyner

901 Final Exam

December 15, 2017

Problem 1

Johnny’s favorite cereal is having a contest. There are N distinct coupons and upon collecting all
N coupons, you win a prize. Each day Johnny gets a new box of cereal and hence a new coupon.
The probability of getting the ith coupon is 1/N . Let T1 = 1 and for n = 2, ..., N , Tn be the day
Johnny gets a coupon different from those obtained in days T1, ..., Tn−1. Thus TN is the day that
Johnny gets all N coupons.

(a) Show that TN is the sum of N independent geometrically distributed random variables.

Solution: Let Xi denote the number of the days it takes to obtain the ith unique coupon
after having obtained (i− 1) unique coupons. Then Xi is geometrically distributed with
probability pi = (N − i + 1)/N . Since each day is independent, we have the Xi’s are
independent and clearly TN = X1 + · · ·+XN .

(b) Find the expected value and variance of TN .

Solution: Utilizing the mean of geometric random variables based on trials,

E[TN ] =

N∑
i=1

N

N − i+ 1
= NhN

where hN is the sum of the first N terms in the harmonic sequence. Now utilizing the
variance of geometric random variables, by independence,

V (TN ) =

N∑
i=1

1− pi
p2i

=

N∑
i=1

Ni−N
(N − i+ 1)2

.

(c) Show that TN/(N logN) converges in probability to 1.

Solution: First note that

V
(
TN/(N logN)

)
=

1

N2 log2N

N∑
i=1

Ni−N
(N − i+ 1)2

≤ 1

N2 log2N

N∑
i=1

N2

(N − i+ 1)2

≤ 1

N2 log2N

N∑
i=1

N2

i2
≤ C

log2N

1



where C =
∑∞

i=1 i
−2. Then, V

(
TN/(N logN)

)
→ 0 as N →∞. Now, consider∫ N

1

1

x
dx < hN < 1 +

∫ N

1

1

x
dx

which is logN < hN < 1 + logN . Thus hN/ logN → 1, implying E[TN/(N logN)]→ 1.
Therefore, for ε > 0, there is an N large enough such that∣∣E[TN/(N logN)]− 1

∣∣ < ε/2.

Thus, for any ε > 0,

P
(
|TN/(N logN)− 1| ≥ ε

)
≤ P

(
|TN/(N logN)− hN/ logN | ≥ ε/2

)
≤
V
(
TN/(N logN)

)
(ε/2)2

→ 0

proving that TN/(N logN)→ 1 in probability.

Problem 2

Suppose that X1, X2, ... are iid having expectation µ and variance σ2. Let X̄n = n−1
∑n

i=1Xi so
that

√
n(X̄−µ)/σ converges in distribution to a standard normally distributed random variable. Let

f be a continuously differentiable function. Use Skorohod representation to show that
√
n(f(X̄)−

f(µ))/(f ′(µ)σ) also converges in distribution to a standard normally distributed random variable.

Solution: By Skorohod’s representation, there exists random variables Yn and Y such that

Yn
d
=
√
n

(
X̄ − µ
σ

)
, Y

d
= Z, and Yn

a.s.→ Y,

where Z ∼ N(0, 1). Then, notice

√
n

(
f(X̄)− f(µ)

f ′(µ)σ

)
d
=
√
n

(
f(µ+ σYn/

√
n)− f(µ)

f ′(µ)σ

)
d
=
f(µ+ σYn/

√
n)− f(µ)

Ynσ/
√
n

· Ynσ

f ′(µ)σ

a.s.→ f ′(µ) · Y σ

f ′(µ)σ
= Y

d
= Z

since Ynσ/
√
n
a.s.→ 0 by the strong law of large numbers. This implies we have convergence in

distribution, which completes the proof.
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Problem 3

In this problem, we develop Stirling’s formula.

(a) Use integration by parts to show

1√
2π

∫ ∞
x

e−u
2/2du ∼ 1√

2π

1

x
e−x

2/2.

Solution: Using integration by parts, we have∫ ∞
x

e−u
2/2du =

∫ ∞
x

u

u
e−u

2/2du = −1

u
e−u

2/2
∣∣∞
x
−
∫ ∞
x

1

u2
e−u

2/2du

=
1

x
e−x

2/2 −
∫ ∞
x

1

u2
e−u

2/2du.

Noting that for large x,
∫∞
x

1
u2
e−u

2/2du ≈ 0, we conclude the result.

(b) Suppose X1, X2, ... are iid having expectation 0 and variance 1 and suppose that an → ∞.
Use the central limit theorem and part (a) to show that

P (Sn ≥ an
√
n) ∼ 1√

2π

1

an
e−a

2
n/2 = e−a

2
n(1+εn)/2,

where εn → 0 if an →∞.

Solution: By the central limit theorem, we know that
√
nX̄ converges in distribution

to a standard normal random variable, i.e. Sn/
√
n→ Z, where Z ∼ N(0, 1). Then, for

large n,

P (Sn ≥ an
√
n) = P (Sn/

√
n ≥ an) ∼ 1√

2π

∫ ∞
an

e−u
2/2du ∼ 1√

2π

1

an
e−a

2
n/2.

(c) Suppose Sn = X1+· · ·+Xn where theXi’s are independent and each has a Poisson distribution
with expectation 1.

(i) Show

E

[(
Sn − n√

n

)−]
= e−n

n∑
k=0

(
n− k√

n

)
nk

k!
=
nn+(1/2)e−n

n!
.

Solution: Note that Sn ∼ Poisson(n). Then, by law of total expectations,

E

[(
Sn − n√

n

)−]
= E

[
−min

(
Sn − n√

n
, 0

)]

=
n∑
k=0

E

[
−min

(
Sn − n√

n
, 0

) ∣∣∣Sn = k

]
P (Sn = k)

=
n∑
k=0

−k − n√
n
· n

ke−n

k!
= e−n

n∑
k=0

n− k√
n
· n

k

k!
.

By induction, we can easily show that e−n
∑n

k=0

(
n−k√
n

)
nk

k! = nn+(1/2)e−n

n! .
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(ii) Show (
Sn − n√

n

)−
d→ N−.

Solution: We know by the central limit theorem that Sn−n√
n

d→ N(0, 1). Now, since

g(x) = −min(x, 0) is a continuous function, we have the result.

(iii) Show

E

[(
Sn − n√

n

)−]
→ E[N−] =

1√
2π
.

Solution: Define Xn =
(
Sn−n√

n

)−
. Since Xn

d→ N−, by Skorohod’s representation

theorem, there exists random variables X̃n =
(
S̃n−n√

n

)−
and Ñ− such that X̃n

d
= Xn,

Ñ−
d
= N−, and X̃n

a.s.→ Ñ−. Also, see that

E
[
X̃2
n

]
=

1

n
E
[
(S̃n − n)2

]
= 1.

Therefore, we have∫
{X̃n≥c}

X̃ndP ≤
1

c

∫
{X̃n≥c}

X̃2
ndP ≤

1

c
E
[
X̃2
n

]
≤ 1

c
→ 0

as c→∞. This implies we have uniform integrability and hence may interchange limits
with expectations. Finally,

lim
n→∞

E[Xn] = lim
n→∞

E
[
X̃n

]
= E

[
lim
n→∞

X̃n

]
= E

[
Ñ−
]

= E[N−]

which proves the result.

(iv) Show Stirling’s formula, n! ∼
√

2πnn+(1/2)e−n.

Solution: This follows immediately from part (i) and (iii).

Problem 4

Let X and Y be independent Bernoulli random variables on a probability space (Ω,B, P ) with

X
d
= Y and P (X = 0) = P (X = 1) = 0.5. Let Xn = Y for n ≥ 1. Show Xn

d→ X, but that Xn

does NOT converge in probability to X.

Solution: First see that the distribution function for each Xn is

Fn(x) = P (Xn ≤ x) =


0 x < 0

1/2 0 ≤ x < 1

1 x ≥ 1

,

which is the same as the distribution function for X. Thus, limn→∞ Fn(x) = F (x) for all x.
However, for 0 < ε < 1,

P (|Xn −X| ≥ ε) = P (Xn 6= X) = 1/2

for all n. Therefore, Xn does not converge to X in probability.
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Problem 5

Suppose X1, ..., Xn are iid exponentially distributed with mean 1. Let

X1,n < · · · < Xn,n

be the order statistics. Fix an integer l and show nXl,n
d→ Yl, where Yl ∼ Gamma(l,1). Try

doing this (a) in a straightforward way by brute force and then (b) using the Renyi representation
(exercise 32 on page 116) for the spacings of order statistics from the exponential density.

Solution: (a) Recall the formula for the lth order statistic is

fXl,n
(x) =

n!

(l − 1)!(n− l)!
[FX(x)]l−1[1− FX(x)]n−lfX(x)

=
n!

(l − 1)!(n− l)!
[1− e−x]l−1e−(n−l)xe−x.

By the transformation theorem, we have

fnXl,n
(x) =

(n− 1)!

(l − 1)!(n− l)!
[1− e−x/n]l−1e−(n−l)x/ne−x/n.

Note that for large n, 1− e−x/n ∼ x/n. Therefore,

fnXl,n
(x) =

(n− 1)!

(l − 1)!(n− l)!
[1− e−x/n]l−1e−(n−l)x/ne−x/n

∼ (n− 1)!

(l − 1)!(n− l)!
[x/n]l−1ex ∼ xl−1e−x

(l − 1)!

n(n− 1) · · · (n− l + 1)

nl

∼ xl−1e−x

(l − 1)!
,

which is a Gamma(l, 1) random variable.
(b) By Renyi representation theorem, we have Yk = Xk,n −Xk−1,n ∼ Exp(n− k + 1). Note

nXl,n = n(Yl + Yl−1 + · · ·+ Y2 +X1,n) = nYl + nYl−1 + · · ·+ nY2 + nX1,n

and also nYk ∼ Exp
(
(n− k + 1)/n

)
and nX1,n ∼ Exp(1). Observing MFGs of each nYk,

E[enYkt] =
(n− k + 1)/n

(n− k + 1)/n− t
→ 1

1− t

which is the MFG of Exp(1). That is, nYk and nX1,n converge in distribution to Exp(1), and

it follows that nXl,n
d→ Gamma(l, 1).
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