Chase Joyner

901 Final Exam

December 15, 2017

Problem 1

Johnny’s favorite cereal is having a contest. There are N distinct coupons and upon collecting all
N coupons, you win a prize. Each day Johnny gets a new box of cereal and hence a new coupon.
The probability of getting the ith coupon is 1/N. Let T3 = 1 and for n = 2,..., N, T}, be the day
Johnny gets a coupon different from those obtained in days 711, ...,T,—1. Thus Ty is the day that
Johnny gets all N coupons.

(a) Show that Ty is the sum of N independent geometrically distributed random variables.

Solution: Let X; denote the number of the days it takes to obtain the ¢th unique coupon
after having obtained (i — 1) unique coupons. Then X is geometrically distributed with
probability p; = (N — i+ 1)/N. Since each day is independent, we have the X;’s are
independent and clearly Ty = X7 +--- + Xn.

(b) Find the expected value and variance of Ty.

Solution: Utilizing the mean of geometric random variables based on trials,
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where hy is the sum of the first N terms in the harmonic sequence. Now utilizing the
variance of geometric random variables, by independence,
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(¢) Show that T /(N log N) converges in probability to 1.

Solution: First note that
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where C'=37°,i72. Then, V(Tn/(Nlog N)) — 0 as N — oo. Now, consider
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which is log N < hy < 1+log N. Thus hy/log N — 1, implying E[Tx /(N log N)|] — 1.
Therefore, for € > 0, there is an N large enough such that

|E[Tn/(NlogN)] — 1] < /2.

Thus, for any € > 0,

P(|Tn/(NlogN) —1| > €) < P(|T/(Nlog N) — hn/log N| > ¢/2)
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proving that T /(N log N) — 1 in probability.

Problem 2

Suppose that X7, Xo, ...

are iid having expectation p and variance o?. Let X, = n~! > X so

that \/n(X —p) /o converges in distribution to a standard normally distributed random variable. Let
f be a continuously differentiable function. Use Skorohod representation to show that /n(f(X) —
f(w)/(f'(1n)o) also converges in distribution to a standard normally distributed random variable.

Solution: By Skorohod’s representation, there exists random variables Y;, and Y such that
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where Z ~ N(0,1). Then, notice
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and Y, =Y,
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since Y,0/y/n 2% 0 by the strong law of large numbers. This implies we have convergence in

distribution, which completes the proof.



Problem 3

In this problem, we develop Stirling’s formula.
(a) Use integration by parts to show

fuz/ZdUN 1 1 fx2/2.
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Solution: Using integration by parts, we have
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Noting that for large z, f;o u%e_"2/ 2du ~ 0, we conclude the result.

(b) Suppose X1, X, ... are iid having expectation 0 and variance 1 and suppose that a, — oo.
Use the central limit theorem and part (a) to show that
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where €, — 0 if a,, — 0.

Solution: By the central limit theorem, we know that \/nX converges in distribution
to a standard normal random variable, i.e. S, /v/n — Z, where Z ~ N(0,1). Then, for
large n,

o0
P(Sp 2 an\/ﬁ) = P(Sn/\/ﬁ > an) ~ \/127/ €_u2/2du ~ 71 ie_a%/?
T Jan

21 Qn

(c¢) Suppose S, = Xj+---+X,, where the X;’s are independent and each has a Poisson distribution

with expectation 1.
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Solution: Note that S,, ~ Poisson(n). Then, by law of total expectations,
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(ii) Show
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Solution: We know by the central limit theorem that Sz=n 4N (0,1). Now, since
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g(x) = —min(z,0) is a continuous function, we have the result.
(iii) Show
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Solution: Define X,, = (M>_ Since X, A N, by Skorohod’s representation
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theorem, there exists random variables )Z'n = (g"\/%”>_ and N~ such that )Z'n 4 X,

N- L N~, and )Zn % N—. Also, see that
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as ¢ — o0o. This implies we have uniform integrability and hence may interchange limits
with expectations. Finally,

lim E[X,] = lim B[X,] = E[ lim X,] =E[N~] =E[N]

n—o0 n—o0 n—oo
which proves the result.

(iv) Show Stirling’s formula, n! ~ v/27n™+(1/2)e=n,

Solution: This follows immediately from part (i) and (iii).

Problem 4

Let X and Y be independent Bernoulli random variables on a probability space (2, B, P) with
X2V and P(X =0) = P(X =1) = 0.5. Let X, = Y for n > 1. Show X,, % X, but that X,
does NOT converge in probability to X.

Solution: First see that the distribution function for each X, is

0 z <0
Folz)=P(X,<z)=<¢1/2 0<z<1,
1 r>1

which is the same as the distribution function for X. Thus, lim,_,~ F,(z) = F(z) for all z.
However, for 0 < e < 1,

P(|Xn— X| > €) = P(X, £ X) =1/2

for all n. Therefore, X,, does not converge to X in probability.



Problem 5

Suppose X1, ..., X;, are iid exponentially distributed with mean 1. Let

Xl,n < - <Xn,n

be the order statistics. Fix an integer [ and show n.Xj, LS Y;, where Y; ~ Gamma(l,1). Try
doing this (a) in a straightforward way by brute force and then (b) using the Renyi representation
(exercise 32 on page 116) for the spacings of order statistics from the exponential density.

Solution: (a) Recall the formula for the [th order statistic is
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Note that for large n, 1 — e~/ ~ x/n. Therefore,
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which is a Gamma(/, 1) random variable.
(b) By Renyi representation theorem, we have Y;, = X, ,, — Xy—1, ~ Exp(n — k +1). Note

nXin =n(Yi+ Y1+ + Y2+ Xopn) =nYi+nYiq + -+ 0¥z +nXiy
and also nYj, ~ Exp((n — k +1)/n) and nXy, ~ Exp(1). Observing MFGs of each nYy,
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which is the MFG of Exp(1). That is, nY}, and n.X ,, converge in distribution to Exp(1), and
it follows that n.Xj,, LN Gamma(l, 1).



